Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Virol ; 165: 105496, 2023 08.
Article in English | MEDLINE | ID: covidwho-2328174

ABSTRACT

BACKGROUND/PURPOSE: While current guidelines recommend the use of respiratory tract specimens for the direct detection of SARS-CoV-2 infection, saliva has recently been suggested as preferred sample type for the sensitive detection of SARS-CoV-2 B.1.1.529 (Omicron). By comparing saliva collected using buccal swabs and oro-/nasopharyngeal swabs from patients hospitalized due to COVID-19, we aimed at identifying potential differences in virus detection sensitivity between these sample types. METHODS: We compare the clinical diagnostic sensitivity of paired buccal swabs and combined oro-/nasopharyngeal swabs from hospitalized, symptomatic COVID-19 patients collected at median six days after symptom onset by real-time polymerase chain reaction (PCR) and antigen test. RESULTS: Of the tested SARS-CoV-2 positive sample pairs, 55.8% were identified as SARS-CoV-2 Omicron BA.1 and 44.2% as Omicron BA.2. Real-time PCR from buccal swabs generated significantly higher quantification cycle (Cq) values compared to those from matched combined oro-/nasopharyngeal swabs and resulted in an increased number of false-negative PCR results. Reduced diagnostic sensitivity of buccal swabs by real-time PCR was observed already at day one after symptom onset. Similarly, antigen test detection rates were reduced in buccal swabs compared to combined oro-/nasopharyngeal swabs. CONCLUSION: Our results suggest reduced clinical diagnostic sensitivity of saliva collected using buccal swabs when compared to combined oro-/nasopharyngeal swabs in the detection of SARS-CoV-2 Omicron in symptomatic individuals.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Saliva , Real-Time Polymerase Chain Reaction , Nasopharynx , Specimen Handling , COVID-19 Testing
3.
Infection ; 2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2282651

ABSTRACT

PURPOSE: COViK, a prospective hospital-based multicenter case-control study in Germany, aims to assess the effectiveness of COVID-19 vaccines against severe disease. Here, we report vaccine effectiveness (VE) against COVID-19-caused hospitalization and intensive care treatment during the Omicron wave. METHODS: We analyzed data from 276 cases with COVID-19 and 494 control patients recruited in 13 hospitals from 1 December 2021 to 5 September 2022. We calculated crude and confounder-adjusted VE estimates. RESULTS: 21% of cases (57/276) were not vaccinated, compared to 5% of controls (26/494; p < 0.001). Confounder-adjusted VE against COVID-19-caused hospitalization was 55.4% (95% CI: 12-78%), 81.5% (95% CI: 68-90%) and 95.6% (95%CI: 88-99%) after two, three and four vaccine doses, respectively. VE against hospitalization due to COVID-19 remained stable up to one year after three vaccine doses. CONCLUSION: Three vaccine doses remained highly effective in preventing severe disease and this protection was sustained; a fourth dose further increased protection.

4.
Vaccine ; 41(2): 290-293, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2245460

ABSTRACT

We included 852 patients in a prospectively recruiting multicenter matched case-control study in Germany to assess vaccine effectiveness (VE) in preventing COVID-19-associated hospitalization during the Delta-variant dominance. The two-dose VE was 89 % (95 % CI 84-93 %) overall, 79 % in patients with more than two comorbidities and 77 % in adults aged 60-75 years. A third dose increased the VE to more than 93 % in all patient-subgroups.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Case-Control Studies , COVID-19/prevention & control , Hospitalization , Hospitals , Germany/epidemiology
5.
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz ; 65(12): 1272-1280, 2022 Dec.
Article in German | MEDLINE | ID: covidwho-2119823

ABSTRACT

Vaccines against COVID-19 have been available in Germany since December 2020. At the Robert Koch Institute (RKI), the Immunization Unit is responsible for monitoring vaccination coverage and assessment of vaccine effectiveness. This article provides an overview of the respective reporting structures, vaccination databases, and epidemiological studies established by the Immunization Unit during the COVID-19 pandemic. We describe the COVID-19 Digital Vaccination Coverage Monitoring (DIM), which provides daily updates on vaccination coverage by age group. We next describe how, based on the DIM data and COVID-19 case data, the assessment of vaccine effectiveness against different clinical endpoints (hospitalization, intensive care, death) is performed. While this method is used for a preliminary estimate of vaccine efficacy, population-based nonrandomized studies are able to provide more precise and detailed estimates under "real-world" conditions. In this context, we describe the hospital-based case-control study COViK, which is being conducted in collaboration with the Paul Ehrlich Institute (PEI). We discuss strengths and limitations of the abovementioned structures and tools. Finally, we provide an outlook on future challenges that may arise during the ongoing pandemic and during the transition phase into an endemic situation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Case-Control Studies , Germany/epidemiology , Vaccination
6.
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz ; 64(4): 435-445, 2021 Apr.
Article in German | MEDLINE | ID: covidwho-1196566

ABSTRACT

When the emerging novel SARS-CoV­2 virus first appeared in December 2019, neither specific therapeutic options nor vaccinations were available. The role of nonpharmaceutical interventions (NPIs) became of central importance. At the Robert Koch Institute, a multilayer strategy consisting of population-based and individual preventive measures to control the pandemic was developed, which built upon existing influenza pandemic plans as well as generic plans. This paper explains the recommended NPIs and illustrates the pharmaceutical approaches developed in parallel.Among others, general contact bans, providing material for infection prevention and control, ban of events, closing educational institutions, and restricting travel are counted among population-based measures. Additional individual preventive measures are necessary, e.g., keeping a minimum distance, reducing contacts, and wearing a mouth-nose covering as well as quarantine and isolation. Measures within the health system are based on recommendations of the Commission on Hospital Hygiene and Infection Protection (Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO)) and specified and implemented by professional societies. Since November 2020, an antiviral therapy with remdesivir and treatment with the glucocorticoid dexamethasone have been available as pharmaceutical interventions. Monoclonal antibodies are at this time not approved. Therapeutic anticoagulation is recommended.Recommendations are constantly adapted to the increasing knowledge on the pathogen and its means of transmission. A challenge is to strengthen the trust of the population. Many measures have to be applied on an individual basis in order to work together.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Germany , Humans , Pandemics/prevention & control , Quarantine , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL